New publication!

Our new article has been accepted in BioData Mining:

Beinecke J, Heider D: Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making. BioData Mining 2021, 14:49. (Link)


Clinical data sets have very special properties and suffer from many caveats in machine learning. They typically show a high-class imbalance, have a small number of samples and a large number of parameters, and have missing values. While feature selection approaches and imputation techniques address the former problems, the class imbalance is typically addressed using augmentation techniques. However, these techniques have been developed for big data analytics, and their suitability for clinical data sets is unclear.

This study analyzed different augmentation techniques for use in clinical data sets and subsequent employment of machine learning-based classification. It turns out that Gaussian Noise Up-Sampling (GNUS) is not always but generally, is as good as SMOTE and ADASYN and even outperform those on some datasets. However, it has also been shown that augmentation does not improve classification at all in some cases.

Written by: Dominik Heider