
Sperlea et al.

SOFTWARE

SEDE-GPS: Socio-Economic Data Enrichment

based on GPS information
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Abstract

Background: Microbes are essential components of all ecosystems because they drive many biochemical
processes and act as primary producers. In freshwater ecosystems, the biodiversity in and the composition of
microbial communities can be used as indicators for environmental quality. Recently, some environmental
features have been identified that influence microbial ecosystems. However, the impact of human action on
lake microbiomes is not well understood. This is, in part, due to the fact that environmental data is, albeit
theoretically accessible, not easily available.

Results: In this work, we present SEDE-GPS, a tool that gathers data that are relevant to the environment of
an user-provided GPS coordinate. To this end, it accesses a list of public and corporate databases and
aggregates the information in a single file, which can be used for further analysis. To showcase the use of
SEDE-GPS, we enriched a lake microbial ecology sequencing dataset with around 18,000 socio-economic,
climate, and geographic features. The sources of SEDE-GPS are public databases such as Eurostat, the
Climate Data Center, and OpenStreetMap, as well as corporate sources such as Twitter. Using machine
learning and feature selection methods, we were able to identify features in the data provided by SEDE-GPS
that can be used to predict lake microbiome alpha diversity.

Conclusion: The results presented in this study show that SEDE-GPS is a handy and easy-to-use tool for
comprehensive data enrichment for studies of ecology and other processes that are a↵ected by environmental
features. Furthermore, we present lists of environmental, socio-economic, and climate features that are
predictive for microbial biodiversity in lake ecosystems. These lists indicate that human action has a major
impact on lake microbiomes. SEDE-GPS and its source code is available for download at
SEDE-GPS.heiderlab.de
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Background
The global positioning system (GPS), established in
1972 and made publicly available in 2000, allows for
the exact identification of every spot on the surface
of the earth [1]. Consequentially, when studying ge-
ographically localized objects or processes such as
ecosystems, their location can easily be specified us-
ing GPS coordinates.
Many natural processes are strongly influenced by

characteristics of their surroundings, i.e., it is known
that chemical composition, size of di↵erent habitats,
and socio-economic features such as human popula-
tion size, can influence the (microbial) biodiversity in
ecosystems [2, 3, 4, 5]. Therefore, having access to envi-
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ronmental characteristics and including them in anal-
yses is crucial when trying to understand natural pro-
cesses.
In the current study, we describe the novel tool

SEDE-GPS (Socio-economic data enrichment based on
GPS information), which can be used to enrich data
sets with data from public and publicly available cor-
porate databases based on user-specified GPS informa-
tion. The current version of SEDE-GPS accesses Open
Street Map (OSM), the Climate Data Center (CDC),
Eurostat, and Twitter. SEDE-GPS has an easy-to-use
graphical user interface and enables researchers to en-
rich their data with environmental and socio-economic
information based on GPS information. This may lead
to new insights into the influence of environmental and
socio-economic features on a wide range of processes.
As an exemplary use-case of SEDE-GPS, we use it

in order to identify features that have an impact on
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microbial biodiversity. To this end, we calculate di↵er-
ent alpha diversity metrics from a sequencing dataset
sampled from a set of alpine lakes in Austria. We then
use feature selection and machine learning methods to
determine features from the output of SEDE-GPS that
can be used to predict these alpha diversity metrics.
Our results show that both microbial Eukaryotes and
Prokaryotes are impacted by di↵erent environmental
features. Nevertheless, for both domains, the area and
number of city structures (or lack thereof) and other
human-related features carry high predictive power.

Implementation
SEDE-GPS can be used via both a graphical user in-
terface (GUI) and a command line interface. As main
input, SEDE-GPS takes a list of at least one GPS coor-
dinate. Additionally, SEDE-GPS needs a set of param-
eters specifying which databases will be queried and
restrictions on the subfields to be downloaded. In the
GUI, these parameters can be selected via mouse-click,
however, in the command line version, these parame-
ters need to be specified in a config file. The output
of the di↵erent modules implemented in SEDE-GPS is
temporarily saved and removed after being merged to
a final output file in the csv format. This is due to the
fact that the output of SEDE-GPS can be too large
for regular-sized memory.
In the following, we will discuss the sources for data

enrichment currently used by SEDE-GPS (fig. 1).

OSM: Land use statistics
Open Street Map (OSM) is a community-generated,
worldwide map. It is used by SEDE-GPS to gather
information on land-use of the area that surrounds a
given GPS position [6]. An area with an user-defined
perimeter is extracted from relevant map tiles of the
OSM database. As OSM maps are represented in Mer-
cator projection, SEDE-GPS compensates for latitu-
dinal distortion. From this map excerpt, the relative
amount of pixels covered by di↵erent map legend ob-
jects are calculated by thresholding for their respective
colors. This will calculate the fraction of area around
the user-provided GPS position that is covered by, e.g.,
forests, city structures, or bodies of water.

OSM: POIs
In addition to the map itself, OSM also hosts a
database that contains the locations of specific points
of interests (POIs), such as special buildings or touris-
tically relevant objects [6]. This module queries the
OSM API and counts the number of the di↵erent POIs
in a perimeter of user-defined size around the GPS co-
ordinates. As the OSM API reacts to queries slowly,
this module is the largest contributor to the runtime

of SEDE-GPS. Therefore, for larger analyses, it is ad-
visable to manually download the so-called planetfile
from OSM and to use it as an additional input for
SEDE-GPS.

Eurostat: Detailed regional statistics
The Eurostat database contains highly detailed gov-
ernmentally collected data from the EU and EFTA
member states [7]. Its regional database provides
statistics on economic and social composition of cen-
trally defined NUTS (Nomenclature des unités terri-
toriales statistiques) regions. This module first deter-
mines the NUTS region that corresponds to the user-
specified GPS position by querying the Google Maps
database for the GPS positions’ postal code. With
around 17,500 features, this module’s output repre-
sents 99.4% of all features gathered by SEDE-GPS.

CDC: European climate data
Via the CDC, a ftp server mainained by the Deutscher
Wetterdienst (DWD), it is possible to publicly and
freely access European climate data that dates back
to 2010 [8, 9]. The data has an interpolated spatial
resolution of 5 km and a chronological resolution of a
day or a month. This module requires a date as ad-
ditional input and calculates average values of, e.g.,
temperature or windiness for the specified day, month,
and/or year.

Twitter
The short messages sent out by users of Twitter (so-
called tweets) can be location-tagged, and their num-
ber can be used to estimate tourist interest in a POI.
The Twitter module of SEDE-GPS collects and counts
tweets sent from a user-specified perimeter around the
GPS coordinates. Twitter limits the access to its data
so that SEDE-GPS can access all tweets that were sent
in the last 7 days, but can only send 75 queries per 15
minutes. For a large number of GPS coordinates, this
module will, therefore, require a long runtime.

Methods
Calculation of alpha diversity indices
The sequence data analyzed in the current study was
was taken from [10, 11]. It stems from a set of alpine
Austrian lakes, which were sampled in order to study
the change of lake microbial ecosystems of three dif-
ferent lakes over time [10] and the di↵erence in micro-
biome composition over many lakes [11]. 16s and 18s
SSU rRNA sequences were sequenced using a 454 deep-
sequencing amplicon approach [10, 11]. In the current
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study, only samples that were taken in August 2006
and contain more than 1000 sequences were analyzed.
16s and 18s rRNA sequences were analyzed separately.
In order to estimate biodiversity within the samples,

we calculated four di↵erent alpha diversity indices,
namely Shannon’s Entropy H 0, Simpson diversity D,
Simpson evenness E and the Chao1 Estimator C, at
the maximal possible sequencing depth with QIIME
[12]. These indices describe the mean species richness
or diversity at the local level [13] and are described by
the following equations:

H 0 = �
RX

i=1

p1 ln pi with pi =
ni

N
(1)

D = 1�
PR

i=1 ni(ni � 1)

n(n� 1)
(2)

E = �1/�

R
with � =

RX

i=1

(
ni

N
)2 (3)

C = R+
S1(S1 � 1

2(S2 + 1)
(4)

where R is the number of species, ni the number of
individuals in species i, N the total number of individ-
uals, S1 the number of singletons (i.e., the number of
species with only one individuum) and S2 the number
od doubletons (i.e., the number of species with exactly
two individuals).

Feature selection and feature evaluation
Before using the output of SEDE-GPS for machine
learning, we employed a feature selection step. To this
end, features containing missing values and with low
variance (e.g., with more than 25% zeroes) were dis-
carded. Next, we used EFS in order to rank the re-
maining features according to their importance. EFS
is an ensemble learning feature selection method, that
corrects for biases of the single methods when weight-
ing features [14, 15]. Although EFS has been developed
for feature selection in classification studies, we used
an adapted version of EFS, which can be used for re-
gression studies.
Stability of the features gathered over multiple runs

of EFS were assessed by calculating the mean pair-
wise distance between the feature lists. To this end,
we calculated Kendall’s ⌧ and the Jaccard distance
using the R packages kendall and philentropy [16, 17].

For two ranked lists of observations x and y of length
n, Kendall’s ⌧ is defined as

⌧(x, y) =
c� d

n(n� 1)/2
(5)

with c being the number of pairs of concordant obser-
vations (xi, yi) and (xj , yj) with xi < xj and yi < yj ,
d the number of discordant observations with

(xi > xj)&(yi < yj) k (xi < xj)&(yi > yj), (6)

i and j indices in the lists x and y, respecitvely.
The Jaccard distance dJ for two lists x and y is de-

fined as

dJ(x, y) =
|x [ y|� |x \ y|

|x [ y| . (7)

Therefore, for two feature lists with a maximum dis-
tance, the Jaccard distance would assume a value of 1
and Kendal’s ⌧ a value of �1. These values were cal-
culated from feature lists that contain the 50 features
that were ranked most important by EFS.
Sets of correlating features were determined using

Spearman correlation at a correlation coe�cient cuto↵
of larger than 0.7.

Machine learning
We trained and evaluated eleven di↵erent machine
learning models (as implemented in the R pack-
age caret [18]) using a leave-one-out cross-validation
(LOOCV) scheme. These models included general-
ized linear models (glmnet), bayesian lasso (blasso),
support vector machines (svmLinear and svmRadial),
k-nearest neighbors (knn), Regression Trees (CART:
rpart, bagged CART: treebag), Random Forests (rf ),
stochastic and extreme gradient boosting (gbm and
xgbTree). Models were evaluated by comparing the
predicted values for all iterations to the real alpha di-
versity values, resulting in R2 values. Confidence inter-
vals for the models’ performance were calculated from
the distribution of R2 values that were gathered from
1000x bootstrapped pairs of predicted and observed
target variables. Their distributions were visualized
using boxplots.
The machine learning models were tested for over-

fitting using a permutation test. To this end, the tar-
get variable was permutated and models were trained
using the same approach as described above. R2 val-
ues were calculated and collected for 1000 repetitions
of this procedure. Finally, the number of times t the
resulting R2 value is larger than or equal to the R2

value received with an unpermutated target variable
was counted. Significance in terms of a p value was
calculated by p = t/1000.
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Results
Data enrichment using SEDE-GPS
SEDE-GPS is structured modularily, with every mod-
ule querying a certain database or API and, if nec-
essary, data pre- and postprocessing steps (table 1).
The modules that query the Open Streetmap (OSM)
databases, e.g., have to account for the fact that their
maps are in a Pseudo-Mercator projection or calcu-
late a bounding box for counting of POIs. Some of
the APIs queried by SEDE-GPS limit the number of
queries that are handled in a certain amount of time
(Twitter) or answer intentionally slowly (OSM). Simi-
larly, the number of features provided by the di↵erent
modules varies greatly, with Eurostat and Twitter con-
tributing by far the most the highest numer of features,
respectively (table 1).
In order to showcase the use of SEDE-GPS, we

planned to identify features that are predictive for the
microbial biodiversity in a set of 39 alpine Austrian
lakes. From these lakes, water samples were taken from
which both 16s and 18s rRNA were sequenced and the
geo-location of the sampling was recorded using GPS
[10, 11]. These GPS coordinates were used as an input
for SEDE-GPS, with all modules enabled, using radii
of 1, 2, and 5 km and the date of sampling as addi-
tional input for modules for which this is necessary.
This resulted in around 17,900 features.
The resulting dataset was observed to be highly

sparse, with especially the output of the Eurostat and
Twitter module showing a high degree of sparsity. Fur-
thermore, a very small amount of features contained
missing values, which we attributed to either errors in
the databases or in the communication with the API.
Therefore, features were discarded that contained any
missing values or zeroes for more than a third of the
instances. This procedure reduced the number of fea-
tures per lake to around 1,200.

Calculation of biodiversity metrics
The 16s and 18s rRNA sequencing datasets were pro-
cessed separately using a QIIME pipeline [12]. Sam-
ples that contained less than 1000 sequences were dis-
carded, which lead to di↵ering numbers of lakes for
which Eukaryotic and Prokaryotic biodiversity data
were available. As biodiversity indicators, four di↵er-
ent Alpha diversity metrics (Shannon’s entropy, Simp-
son diversity, Simpson evenness and the Chao1 estima-
tor) were calculated after rarefaction (Methods). We
used multiple di↵erent metrics as they each measure
biodiversity in specific ways and therefore emphasize
di↵erent species distribution characteristics [19, 20].
As the alpha diversity metrics were calculated for 16s
and 18s rRNA separately, this resulted in maximally
eight di↵erent biodiversity indicators for each lakes.

Identification of important features using EFS
In order to find features in the output of SEDE-GPS
that are predictive for lake microbial biodiversity, we
used the R package EFS and the eight alpha diversity
metrics as target variable in separate analyses [14, 15].
EFS is an ensemble feature selection method that as-
signs weights to the features in an unbiased manner
according to their predictiveness for the target value.
Using the average weight of the features as cuto↵,

features below this cuto↵ were discarded. To verify
that the selected features are both descriptive and were
not selected due to overfitting, eleven di↵erent machine
learning models were trained to predict the eight al-
pha diversity values from the EFS-selected SEDE-GPS
features. The models showed profoundly di↵erences in
performance (table 1) with xgbTree showing near per-
fect performance for all target variables (figure 2). In
order to confirm that the performance of the mod-
els is not due to overfitting, we performed a permuta-
tion test for the four best-performing machine learning
models. For all target variables and machine learning
models, this resulted in a p-value of less than 0.001.
Taken together, these results show that the features

selected by EFS were not selected due to overfitting
but are helpful for predicting alpha diversity metrics
for prokaryotes and microbial eukaryotes in lakes.

Stability and importance of features
Due to the fact that leave-one-out cross validation
(LOOCV) was used to train and validate the ma-
chine learning models, multiple weighted feature lists
were calculated for every target variable. Overfitting of
EFS would have resulted in drastically di↵erent feature
weights in the LOOCV iterations. In order to show
that EFS did not overfit in the analyses presented here,
we assess the stability of the features selected in the
LOOCV iterations using both Kendall’s ⌧ and Jac-
card distance as feature list distance measures. These
results show that the features selected by EFS show a
high degree of stability and that the feature selection
is not the result of overfitting (figure 3).
When manually examining selected features, it is im-

portant to keep in mind that the first step of feature
selection in EFS is correlation based. This means that
from sets of features that correlate, only the most de-
scriptive feature is kept in the feature set. Therefore,
for datasets processed with EFS, each feature label
must be viewed as stand-in for a set of correlating fea-
tures. Table 3 shows the five most important features
for predicting the di↵erent alpha diversity metrics,
with each feature name being replaced by higher order
descriptions of the respective set of correlating features
(for the simple feature names, see table S1). This ex-
amination was limited to five features per target vari-
able because both the average feature weight and the
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stability of the feature position decrease quickly with
increasing rank of the feature (figure 4, S1).
The resulting feature lists for Prokaryotes and mi-

crobial Eukaryotes show major di↵erences, while using
di↵erent alpha diversity metrics result, especially for
Prokaryotes, in similar feature lists (table 3).

Discussion
In this paper, we present SEDE-GPS, which can be
used to drastically increase the number of features for
datasets that contain GPS-located samples. Access-
ing four di↵erent sources via five modules, it provides
around 18,000 numerical features that contain socio-
economic, geographic, and climate information (table
1).
Currently, due to the choice of databases SEDE-GPS

queries, this tool has a number of limitations. Both
the CDC and Eurostat modules return only data for
GPS coordinates in Europe, while the OSM modules
and Twitter module will work for any GPS coordinate.
Similarly, the databases queried by SEDE-GPS do not
contain meaningful data for most marine GPS coordi-
nates. In the future, we seek to overcome these limi-
tations by extending SEDE-GPS both to new regions
and to new data types and formats. Nevertheless, due
to the fact that SEDE-GPS does not perform any field-
specific data postprocessing, its output can be used for
studies in a wide variety of scientific fields.
Because of a rate limitation in API queries, both the

OSM modules and the Twitter module are the biggest
contributors to SEDE-GPSs runtime, especially for
datasets with many GPS coordinates. It would be pos-
sible to speed up the OSM modules by reading the
data from a so-called planetfile (an image of the OSM
databases) instead of using API queries. This is, cur-
rently, not implemented in SEDE-GPS, as the plan-
etfile is very large and a speed improvement would,
therefore, only exist for verly large GPS datasets.
In this study, we showcase the use SEDE-GPS for

microbial ecology. From the output of SEDE-GPS,
we were able to identify features that can be used
as predictors of both Eukaryote and Prokaryote al-
pha diversity in a set of alpine lakes. The most pre-
dictive features di↵ered greatly between Eukaryotes
and Prokaryotes, supporting the notion that microor-
ganisms from these domains have highly di↵erent eco-
logical roles [21, 22]. In contrast, the most predictive
features for the di↵erent alpha diversity metrics calcu-
lated from Prokaryotic diversity show a high degree of
similarity. This indicates that the alpha diversity met-
rics used in this study essentially capture the same
central distribution characteristics of the composition
for this domain.

Recent studies identified environmental and geo-
graphic features such as temperature, pH, climate, ion
and nutrient concentration and elevation-related envi-
ronmental parameters as major drivers of the composi-
tion of lake microbiomes [4, 11, 21, 23, 24, 25]. Some of
these features were also identified as highly important
in our analysis (table 3). Furthermore, our results also
suggest that human action has an direct or indirect
impact on lake micrbiome composition. Although an
impact of urbanization on biodiversity is well known
for other areas of ecology [26, 27, 28, 29], this is the first
time, to our knowledge, that it has been described for
microorganisms. Surprisingly, our results suggest that
urbanization has a positive e↵ect on Prokaryote biodi-
versity (table 3), which indicate that the processes that
govern microbial ecology are very di↵erent from those
that regard the ecology of larger organisms [10, 21].
Nevertheless, further analyses would be needed to so-

lidify the results of this study. In part, this is due to the
fact that the samples and lakes included in this anal-
ysis are limited in number and geographically similar
[5, 22, 30, 31]. Therefore, for a more thorough analysis,
larger datasets from more variable sites would be nec-
cessary, as available from, e.g., the Earth Microbiome
Project [32]. Similarly, in order to confirm causal rela-
tionships between the features identified in this paper
and microbial biodiversity, more experiments would be
needed.

Conclusion
The current study shows how to use SEDE-GPS for
datasets that contain scarce amounts information on
the environment of geo-located, observed processes.
Analysing the output of SEDE-GPS leads to the iden-
tification of environmental, socio-economical, and cli-
mate features that influence the studied process. These
results can then act as basis for further hypothesis-
driven research projects. SEDE-GPS is available at
www.SEDE-GPS.heiderlab.de.
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González, A., Morton, J.T., Mirarab, S., Xu, Z.Z., Jiang, L., Haroon,
M.F., Kanbar, J., Zhu, Q., Song, S.J., Kosciolek, T., Bokulich, N.A.,
Lefler, J., Brislawn, C.J., Humphrey, G., Owens, S.M.,
Hampton-Marcell, J., Berg-Lyons, D., McKenzie, V., Fierer, N.,
Fuhrman, J.A., Clauset, A., Stevens, R.L., Shade, A., Pollard, K.S.,
Goodwin, K.D., Jansson, J.K., Gilbert, J.A., Knight, R., The Earth
Microbiome Project Consortium: A communal catalogue reveals earth’s
multiscale microbial diversity. Nature (2017). doi:10.1038/nature24621

Figures

Figure 1 Sample workflow for the use of SEDE-GPS. Based
on user-defined GPS positions, SEDE-GPS queries a set of
modules and returns all relevant data. This data can then be
used in analyses of any geo-located process. Due to the huge
amount of features present in the dataset after data
enrichment with SEDE-GPS, we recommend including a
feature selection step before using the gathered data for model
construction, e.g., based on machine learning. Data sources
are represented by their respective logos which were taken
from Wikimedia (commons.wikimedia.org/wiki/Main_Page).

Figure 2 Performance of machine learning models predicting
microbial lake alpha diversity based on the output of
SEDE-GPS. Stars represent the performance of models
trained on the respecitve dataset, box plots represent
confidence intervals of R2 values gathered from the respective
model. Models were trained on the output of SEDE-GPS after
feature selection and evaluated using LOOCV (Methods).
Only results for the four best-performing models are shown;
for the others, see table 2.

Additional Files

Additional file 1 — SI Lake Positions.csv

This table contains names, positions, and references for the samples
contained in the sequence dataset and whether Prokaryotes and/or
Eukaryotes were analyzed from the sample in this study.

Figure 3 Stability of feature lists over LOOCV iterations.
Jaccard distances and Kendall’s ⌧ were calculated for pairs of
feature lists for the 50 most important features of each
dataset. Dots and error bars represent average values and
standard deviations of values, respectively. At maximum
distance, the Jaccard distance and Kendall’s ⌧ would assume a
value of 1 and �1, respectively. Both feature lists are rather
stable, however, the feature lists of the Prokaryote datasets
are more stable than their Eukaryote counterparts.

Figure 4 Decline of average importance of features over the
25 highest ranked features. Feature weights were calculated
using EFS and averaged over the LOOCV iterations. Ribbons
indicate standard deviation. Average importance values were
normalized so that the first feature has an average weight of
1. For all datasets except Euk Simpson, after the twelfth
highest weighted features, feature weights are below 0.5.

Additional file 2 — SI TOP10 Features.csv
This table contains the feature names of the ten most important features in
respect to the di↵erent alpha diversity metrics for Prokaryotes and
Eukaryotes. Here, feature names were not replaced as described in Methods.

Additional file 3 — Supporting Feature Position Stability.png
This figure shows the relative frequency of the most frequent feature at a
given position for all target variables. Frequencies were calculated from the
feature lists sorted by the weights determined by EFS in the LOOCV
iterations. This shows that feature lists get more random with increasing
rank of the feature on a sorted feature list.
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Table 1 Modules and their subfields currently available in SEDE-GPS. Runtime means and standard deviation were calculated from ten
measurements.

Module Subfields Additional Input Data Processing No. of features Runtime (ms)
OSM Land Use - Radius Pixel decompression 20 24823 ± 2421
OSM POIs Craft Radius Bounding boxes 7 3229 ± 342

Leisure Radius Bounding boxes 15 7202 ± 622
Powerplants Radius Bounding boxes 11 5053 ± 503
Special buildings Radius Bounding boxes 13 6881 ± 453
Tourism Radius Bounding boxes 8 3096 ± 382
Transport Radius Bounding boxes 13 6951 ± 496
Urban Radius Bounding boxes 6 2402 ± 401

CDC Average of the day Date 4 <1
Average of the month Date 4 2 ± 0
Average of the year Date 4 211 ± 0

Eurostat Agriculture 721 711 ± 80
Business Demography 778 1467 ± 83
Crime Statistics 4 16 ± 4
Demography 15077 2611 ± 79
Economic Accounts 67 431 ± 41
Education Stat. 30 31 ± 5
Labour Market Stat. 99 172 ± 17
Science & Technology 644 3718 ± 400
Tourism Stat. 44 163 ± 11
Transport 59 13383 ± 224

Twitter - Radius 1 1014 ± 316
Total 17629 83567

Table 2 Performance (R2 values) of machine learning models trained to predict alpha diversity from SEDE-GPS output

Dataset glmnet blasso svmRadial svmLinear knn rpart treebag rf gbm xgbTree

Euk Chao1 0.292 0.003 0.713 0.980 0.0415 0.214 0.631 0.518 0.496 0.999
Euk Shannon 0.228 0.0167 0.791 0.993 0.000 0.180 0.635 0.582 0.680 1.000
Euk Simpson e 0.277 0.0146 0.556 0.976 0.107 0.238 0.671 0.559 0.546 0.980
Euk Simpson 0.150 0.001 0.742 0.906 0.014 0.090 0.545 0.346 0.432 0.995
Prok Chao1 0.768 0.461 0.832 0.991 0.0695 0.420 0.635 0.915 0.955 0.979
Prok Shannon 0.527 0.011 0.940 0.991 0.172 0.538 0.626 0.930 0.993 0.999
Prok Simpson e 0.345 0.128 0.849 0.991 0.035 0.304 0.622 0.937 0.840 0.999
Prok Simpson 0.459 0.008 0.915 0.986 0.168 0.453 0.627 0.904 0.880 0.991
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Table 3 Features with the highest weights for prediction of di↵erent alpha diversity metrics for Prokaryotes and Eukaryotes in Austrian
lakes. For features in bold, a linear regression shows a positive relationship with the respective target variable.

Prokaryotes

Chao1 Shannon Entropy Simpson Diversity Simpson Evenness
Industrial Area, Vil-
lages, Street (2-5
km)

Forests (5km) Forests (5km) Forests (5km)

Forests (5km) Main street
(small), married
people

Forests Main street
(small), married
people

Climate, Demogra-
phy, City Structures

Forests (2km) Buildings, High-
ways, Water,
Parking, Parks

Forests (1km)

Climate, Demogra-
phy, City Structures

Climate, Demogra-
phy, City Structures

Forests (1km) Buildings, High-
ways, Water,
Parking, Parks

Main street
(small), married
people

Green space, small
villages, Industrial
area

Mining, main
streets

Mining, main
streets

Eukaryotes

Chao1 Shannon Entropy Simpson Diversity Simpson Evenness
Forests Main streets Main streets Economy (parking,

GDP, Agrarian
structures), Popu-
lation

Family Demography Beach & Water Beach & Water Economy (parking,
GDP, Agrarian
structures), Popu-
lation

Climate, Demogra-
phy, City Structures

Picnic Site (5km) Economy (parking,
GDP, Agrarian
structures), Popu-
lation

Beach & Water

Altitude, Climate,
Demography, City
Structures

Highway Pull-ins Towns Towns

Climate, Demogra-
phy, City Structures

Urban regions,
Av. Temperature,
Parks

Urban regions, Av.
Temp., Parks

Highway Pull-ins
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