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Abstract 
Motivation: The V3 loop of the gp120 glycoprotein of the Human Immunodeficiency Virus 1 (HIV-
1) is considered to be responsible for viral coreceptor tropism. gp120 interacts with the CD4 
receptor of the host cell and subsequently V3 binds either CCR5 or CXCR4. Due to the fact that 
the CCR5 coreceptor is targeted by entry inhibitors, a reliable prediction of the coreceptor usage 
of HIV-1 is of great interest for antiretroviral therapy. Although several methods for the prediction 
of coreceptor tropism are available, almost all of them have been developed based on only 
subtype B sequences, and it has been shown in several studies that the prediction of non-B 
sequences, in particular subtype A sequences, are less reliable. Thus, the aim of the current study 
was to develop a reliable prediction model for subtype A viruses.  
Results: Our new model SCOTCH is based on a stacking approach of classifier ensembles and 
shows a significantly better performance for subtype A sequences compared to other available 
models. In particular for low false positive rates (between 0.05 and 0.2, i.e., recommendation in 
the German and European Guidelines for tropism prediction), SCOTCH shows significantly better 
prediction performances in terms of partial area under the curves and diagnostic odds ratios 
compared to existing tools, and thus can be used to reliably predict coreceptor tropism for subtype 
A sequences. 
Availability: SCOTCH can be downloaded at http://www.heiderlab.de. 
Contact: dominik.heider@uni-marburg.de 
Supplementary information: Supplementary data are available at Bioinformatics online. 
 



Introduction 
Infection of the host cells with the Human Immunodeficiency Virus 1 (HIV-1) proceeds in several 
steps that include the binding of the gp120 surface protein of HIV-1 to the CD4 receptor and a 
coreceptor, namely one of the chemokine receptors CCR5 or CXCR4 (Lee et al., 1999). 
Coreceptor tropism, i.e., the type of coreceptor that is used by an HIV-1 virus, has important 
clinical implications. First, patients with a CXCR4-tropic virus progress faster to AIDS compared 
to patients with CCR5-tropic viruses (Koot et al., 1993). Second, entry inhibitors that bind to the 
coreceptor and thus inhibit viral entry, such as Maraviroc (Dorr et al., 2005), are only available for 
the CCR5 coreceptor, and are thus ineffective against CXCR4-tropic viruses. Today, entry 
inhibitors are frequently used in antiretroviral treatment, thus the determination of coreceptor 
tropism has become crucial for patient therapy. 
The gold standard for determining coreceptor tropism is by cell-based assays (Whitcomb et al., 
2007). The main disadvantages of cell-based assays are that they can only be carried out by 
specialized laboratories and that these assays are expensive and time-consuming.  
It has been shown in several studies, that computational approaches for coreceptor tropism 
prediction can be a viable alternative to cell-based assays. The main advantage of these 
predictive models is that the procedure is cheap and very fast, in particular when these algorithms 
are executed in a parallelized manner, e.g., on graphics cards (Olejnik et al., 2014). 
Due to the fact that the third variable loop of the gp120 protein (V3) is considered to be responsible 
for coreceptor usage, these models are typically trained on a set of V3 sequences with known 
tropism, and subsequently applied to new, unseen V3 sequences in order to predict tropism. 
Several models have been proposed, from simple rules, such as the 11/25 rule (Fouchier et al., 
1992; Shioda et al., 1992), to sophisticated machine learning models. For instance, 
geno2pheno[coreceptor] is based on a support vector machine (Lengauer et al., 2007) trained on 
V3 sequences. T-CUP uses structural information for modelling the electrostatic potential and 
hydrophobicity of the V3 sequences in order to predict coreceptor tropism (Dybowski et al., 2010a, 
2010b; Heider et al., 2014). PhenoSeq makes use of sequence motifs and predicted charges of 
the sequences (Cashin et al., 2015), while WebPSSM (Jensen et al., 2003) uses scoring matrices. 
These models have been shown to give reliable predictions and can be used for clinical 
assessment of coreceptor tropism. However, HIV-1 can be subdivided into different subtypes that 
show different abundancies and different spatial distributions. HIV-1 subtype B is mainly found in 
North America, the Caribbean, Latin America, Western and Central Europe, and Australia and 
makes up 11% of the infections worldwide (Hemelaar et al., 2011). Almost all available 
computational models have been trained on subtype B data. Subtype C makes up 48% of 
worldwide infections and is mainly found in Africa. It has been shown in several studies that the 
available models for coreceptor tropism can also be applied for subtype C sequences with 
comparable prediction accuracy (Gupta et al., 2015; Riemenschneider et al., 2016). The third 
major subtype, namely subtype A, is responsible for around 12% of worldwide infections and can 
be mainly found in Eastern Europe and Central Asia. Unfortunately, it has been demonstrated 
that the available models are not reliable for tropism prediction of subtype A viruses. The 
performance of the existing tools drops to less than 50% accuracy when applied to subtype A 
sequences. Riemenschneider et al. (2016) proposed that there may be a slightly different 
underlying mode of binding, which could involve other parts of gp120. The potential involvement 



of the V2 loop, for instance, is also mentioned by others (Pastore et al., 2006; Kitawi et al., 2017). 
Moreover, there is an apparent selection for subtype A variants that are less glycosylated and 
with shorter V1-V2 loop sequences (Chohan et al., 2005). The aim of the current study was the 
development of a reliable subtype A specific coreceptor prediction model. 

Methods 

Dataset 
We used the dataset of V3 sequences of subtype A collected by Riemenschneider et al. (2016). 
The V3 loop sequences of HIV-1 with assigned subtype A or CRFs with a V3 region originating 
from subtype A were downloaded from the Los Alamos HIV sequence database (http://hiv-
web.lanl.gov/) in March 2015. Sequences with ambiguities were removed. Additionally, nine 
subtype A sequences that were collected at the Institute of Virology at the University of Cologne 
were used as well. The final dataset consists of 182 V3 sequences of subtype A from 147 R5-
tropic and 35 X4-tropic viruses. 

Phylogenetic Analysis of the Samples 
We performed a phylogenetic analysis of the V3 sequences in order to confirm the assigned 
subtypes. To this end, a multiple sequence alignment (MSA) of the V3 sequences was computed 
with MUSCLE (Edgar, 2004). The MSA was used to generate phylogenetic trees with SeaView 4 
(Gouy et al., 2010) using Poisson distance and BioNJ (Gascuel, 1997). Gap sites were ignored 
and significance was estimated by bootstrapping with 100 replicates. 

Feature Encoding 
It has been shown in several studies that the most crucial part in predictive modeling is the feature 
encoding, i.e., the encoding of the protein sequences. In order to improve ensemble diversity 
(Kuncheva and Whitaker, 2003), we made use of structural and sequence information of the V3 
loop. Introducing structural information into classification models has been demonstrated to 
improve overall prediction performance (Sander et al., 2007; Dybowski et al., 2011; Bozek et al., 
2013). To this end, we encoded the V3 sequences in two ways: (i) by building homology models 
of the V3 loop and calculating the electrostatic potential on the surface, and (ii) by using a 
hydrophobicity encoding of the V3 sequences. 
We employed Modeller (v 9.17) (Sali and Blundell, 1993) in order to generate homology models 
of the V3 sequences, using the X-ray structure of the gp120 protein (PDB: 2QAD) as a template. 
The V3 loop sequences were aligned pairwisely against the sequence of the template structure 
with the R package bio3d (Grant et al., 2006). Upon visual inspection we found that the alignments 
were of good quality and there was no need to manually adjust them.  Ten models were 
generated, and for each V3 sequence, we selected the structure with the highest DOPE-Score 
(Elias et al., 1991) for subsequent analyses. Next, we calculated the electrostatic potential at the 
surface of the V3 structures using the AMBER force field and PDB2PQR (v 2.1.1) (Dolinsky et al., 



2004). The solvent accessible surface of the structures was determined by APBS (v 1.4.2.1)  
(Baker et al., 2001) using a grid of 333 points with a  spacing of 3Å  and a radius of the solvent 
molecules of 1.4Å . In order to find the best distance for our prediction model, we evaluated the 
electrostatic hull at distances of 0Å , 3Å , 6Å , 9Å , and 12Å  from the solvent accessible surface. 
The hydrophobicity encoding of the V3 sequences was generated with Interpol (v 1.3) (Heider 
and Hoffmann, 2011). V3 sequences were translated into their numerical hydrophobicity 
representation according to the Kyte-Doolittle hydropathy index (Kyte and Doolittle, 1982). 
Subsequently, the numerical hydrophobicity vectors were interpolated to a common length of 35, 
which represents the average length in our dataset.  

Machine Learning 
In order to make use of the two encodings mentioned above, we employed a stacking approach 
(Wolpert, 1992). We trained two separate random forests (RFs) (Breiman, 2001), one based on 
the electrostatic potentials and another on the hydrophobicity-encoded V3 sequences using the 
randomForest package in R. For each approach, we trained ten RFs with 3000 trees. The RFs 
were evaluated using the internal out-of-bag estimation, which is based on bootstrapping.  
RFs have been shown in several studies to be highly accurate classifiers and less prone to 
overfitting compared to other machine learning approaches. Besides producing accurate 
predictions, RFs can also be used to estimate the importance of features. We used the Gini-index 
in order to estimate feature importance. 
The outputs of the electrostatic-RF and the hydrophobicity-RF, i.e., the RF trained on the 
electrostatic potentials and the hydrophobicity vectors, respectively, are combined by a stacking 
approach with a third RF. 
The RFs were evaluated by receiver operating characteristics (ROC) analyses using the R 
packages ROCR (Sing et al., 2005) and pROC (Robin et al., 2011). In ROC analysis, the true 
positive rate (TPR) is plotted against the false positive rate (FPR): 
 
TPR = TP / (TP+FN) = sensitivity 
FPR = FP / (FP+TN) = 1-specificity 
accuracy = (TP+TN) / (TP+FN+TN+FP) 
 
with TP: true positives, FN: false negatives, FP: false positives, TN: true negatives. Besides the 
area under the curve (AUC), we also calculated corrected partial AUCs for low FPRs and the 
Diagnostic Odds Ratio (DOR) for FPRs of 0.05, 0.1, 0.15, and 0.2 in order to reflect the 
performance of the models with respect to current treatment guidelines (Vandekerckhove et al., 
2011) for entry inhibitors. The DOR (Glas et al., 2003) is defined as 
 
DOR = (TP/FP) / (FN/TN) 

Comparison with other Methods 
We compared our novel subtype A prediction model SCOTCH with existing models, namely T-
CUP (Heider et al., 2014), geno2pheno[coreceptor] (Lengauer et al., 2007), PhenoSeq (Cashin 



et al., 2015), WebPSSM (Jensen et al., 2003) using all available matrices (i.e., x4r5, sinsi, and 
sinsi c), and the genotypic rules of Raymond et al. (2012) and Esbjörnsson et al. (2010). 

Results 

Overall Approach 
The aim of the study was to build a reliable coreceptor tropism prediction for HIV-1 subtype A. 
Our model SCOTCH is based on a stacking approach of two random forests (RFs) that were 
trained on different feature encoding in order to improve classifier diversity. The first RF was 
trained on the electrostatic potentials at the surface of the V3 structure models. The second RF 
was trained on the numerical hydrophobicity representations of the V3 sequences. The outputs 
of these RFs are combined via stacking. To this end, a third RF uses the outputs, i.e., pseudo-
probabilities, and makes a final prediction whether a given V3 sequence belongs to a CCR5- or 
CXCR4-tropic virus. The performance of SCOTCH was compared with the existing models. 

Electrostatics Hull 
The sequences were aligned using MUSCLE (Edgar, 2004) in a pairwise manner (all-against-all). 
117 V3 sequences (64.3% of all sequences) share at least 90% identity of their sequence with at 
least one other sequence in the dataset. For 48 V3 sequences (i.e., 26.4%), there is at least one 
other V3 sequence with a similarity of >=97.1%. The R5-tropic sequences show a higher average 
similarity compared to the X4 sequences (91.8% and 86.7%, respectively). We used Modeller 
(Sali and Blundell, 1993) in order to generate the V3 structures for the prediction of coreceptor 
tropism, and APBS (Baker et al., 2001) in order to calculate the electrostatic hulls at different 
distances to the surface. For the discretization of the electrostatic hulls in order to be used in the 
subsequent classification models, we used a grid spacing of 3Å, which was centered over each 
V3 loop structure. 
For the electrostatics hull at a distance of 0Å , all 182 V3 loops are too close to the hull or even 
penetrate it, so they have at least one grid point that is not accessible by the solvent. For a 
distance of 3Å  and 6Å , 177 and 65 sequences, respectively, still penetrate the hull. In contrast to 
our results with subtype B sequences (Dybowski et al., 2010), only the electrostatic hulls at a 
distance of 9Å  completely enclose all V3 loop structures. These findings might imply that, on 
average, V3 sequences from subtype A are more disordered compared to subtype B, which have 
been used in former studies. These findings are in line with the notion that subtype A sequences 
show biochemical differences compared to subtype B sequences (Chohan et al., 2005). 

Electrostatics-Based Classification 
A homology model for each V3 loop was generated based on the template X-ray structure of the 
viral gp120 protein (PDB: 2QAD). Electrostatic potentials at discrete grid for each V3 loop 
structure were obtained by solving the non-linear Poisson-Boltzmann equation by APBS (Baker 
et al., 2001). We used the RFs to estimate feature importance. Figure 1 shows the twenty most 



important positions on the V3 structure according to the RF importance analysis. The most 
important positions cluster around residues 11 to 14 and residue 25, which is in partial agreement 
with the 11/25 rule (Fouchier et al., 1992; Shioda et al., 1992). Residue 25 might be less important 
than residues 11 to 14, given the fact that only two out of the twenty most important grid points 
can be assigned to this residue. 
 

 
Figure 1: Most important grid points in the template structure 
The twenty most important grid points identified by the RF are plotted as white spheres around the V3 
loop structure of the template. The 𝐶# atoms of residues neighboring important grid points are shown in 
grey. Residues 11 and 25 are highlighted in black. 

Hydrophobicity-Based Classification 
In addition to the RF trained on the electrostatic hulls, we also trained a model based on the 
hydrophobicity encoding. The V3 loop sequences were encoded with the Kyte-Doolittle 
hydropathy index (Kyte and Doolittle, 1982) using Interpol (Heider and Hoffmann, 2011) and 
normalized to the average V3 length, i.e., 35 residues. Figure 2 shows the importance of the 
residues of the normalized V3 sequences according to the hydrophobicity-based RF.  
Two important clusters can be identified at positions 10 to 14 and 22 to 25. Again, these findings 
are in agreement with the 11/25 rule. Due to the fact that the dataset contains sequences shorter 
than 35 amino acids, residue positions in the interpolated sequences are again slightly shifted to 
the right and do not necessarily correspond to the actual residues. 
 
 
 
 



 
Figure 2: Importance of the V3 loop residues  
The importance has been estimated using the Gini-index. 
  

Stacking Approach 
We used a stacking approach in order to combine both models. To this end, the pseudo-
probabilities of both models were used as an input for a third RF. Figure 3 shows the ROC curves 
of the electrostatics- and hydrophobicity-based models. The AUC of the RF trained on the 
electrostatic hulls is 0.7704±0.0043, while the RF trained on hydrophobicity reaches an AUC of 
0.7004±0.0023. However, the difference in AUC is not significant (p = 0.1899). The electrostatics-
based model reaches higher true TPRs for almost all FPRs, thus it is not obvious why the use of 
stacking could improve overall performance.  
Nevertheless, the third combined RF outperformed the other two RFs significantly at low FPRs. 
The AUC of the combined RF (i.e., our final method SCOTCH) is 0.7031±0.0046, which is not 
significantly higher compared to the model trained solely on the electrostatic hull (p=0.2216). 
However for low FPRs (<0.2) the combined model outperforms the single models (see Figure 3). 
For instance, the European guidelines recommend the use of a 10% FPR cutoff. The corrected 
partial AUCs for the combined model is 0.7498 for an FPR between 0.05 and 0.2, which is 
significantly higher compared to the corrected partial AUCs of 0.6993 and 0.5969 for the 
electrostatics- and hydrophobicity-based model, respectively. 
The sensitivity and accuracy at a specificity of 95%, 90%, and 85% for the different models are 
listed in Table 1. For a specificity of 95%, the electrostatics-based model achieves a sensitivity of 
40.0% and an accuracy of 84.4%. The combined method has a higher sensitivity (47.7%) and a 



higher accuracy (85.9%). The DOR is also higher for the combined model at low FPRs (see Table 
1). 
 

Method Sensitivity Specificity Accuracy DOR 

Electrostatics 40.00 95.00 84.42 15.67 

Hydrophobicity 14.00 95.00 79.42 3.85 

Combined model 
(SCOTCH) 

47.71 95.00 85.91 17.07 

Electrostatics 43.43 90.00 81.04 7.92 

Hydrophobicity 24.57 90.00 77.42 3.36 

Combined model 
(SCOTCH) 

56.57 90.00 83.57 20.08 

Electrostatics 51.71 85.00 78.60 6.45 

Hydrophobicity 31.43  85.00 74.70 2.76 

Combined model 
(SCOTCH) 

57.14 85.00 79.64 13.37 

Table 1: Performance of all methods 
Performance measures were calculated at 95%, 90%, and 85% specificity. 
 



 
Figure 3: ROC curves of all RF models 
The combined SCOTCH method incorporates both the ''Electrostatics Hull'' and the ''Hydrophobicity'' RFs. 

Comparison with other Methods 
The prediction performance of SCOTCH was compared with existing methods, namely T-CUP 
(Heider et al., 2014), geno2pheno[coreceptor] (Lengauer et al., 2007), PhenoSeq (Cashin et al., 
2015), WebPSSM (Jensen et al., 2003) using all available matrices (i.e., x4r5, sinsi, and sinsi c), 
and the genotypic rules of Raymond et al. (2012) and Esbjörnsson et al. (2010). 
In Table 2, the results of the comparison is shown. For all existing methods, except WebPSSM 
with sinsi.c, the sensitivity is less than 20% at a specificity between 93.94% and 99.49%. 
WebPSSM with sinsi.c only reaches a sensitivity of 37.8% at a specificity of 58.59%. 



SCOTCH outperforms all existing models in terms of sensitivity and accuracy at comparable 
specificities. For instance, PhenoSeq reaches a specificity of 94.74%, which is only slightly lower 
compared to SCOTCH (95%). However, the resulting sensitivity of SCOTCH is 47.71%, which is 
significantly higher compared to the sensitivity of PhenoSeq, namely 17.7%. The accuracy of 
PhenoSeq is 54.39%, which is again significantly lower than the accuracy of our new model 
(85.91%). 
 

Method Sensitivity Specificity Accuracy 

T-CUP 18.18 96.32 55.39 

geno2pheno 15.79 97.89 54.89 

Phenoseq 17.70 94.74 54.39 

WebPSSM-x4r5 15.31 93.94 53.56 

WebPSSM-sinsi 11.54 97.98 53.69 

WebPSSM-sinsi.c 37.80 58.59 47.91 

Raymond 11.00 98.48 53.56 

Esbjörnsson 13.40 99.49 55.28 

SCOTCH 47.71 95.00 85.91 

Table 2: Comparison of tropism prediction models on subtype A sequences 

Discussion 
Almost all existing approaches for the prediction of HIV-1 coreceptor tropism are based on 
subtype B and have been shown to perform poorly on other subtypes, most notably on subtype 
A, which is responsible for approximately 12% of all HIV-1 infections worldwide. We therefore 
sought to develop a reliable subtype A specific model. To this end, two RF models were 
developed, one based on electrostatics and the other one based on a hydrophobicity index. These 
two models were combined by using a stacking approach. The resulting model SCOTCH shows 
significantly better performance for subtype A compared to all other methods that have been 
evaluated. Nevertheless, the sensitivity and accuracy of our new model still did not reach the 
same levels than those of the prediction methods for subtype B or C. 
In this study we developed a novel coreceptor tropism prediction algorithm which makes use of 
sequence and structural information of the V3 loop for subtype A. Combining structural and 
sequence information improves diversity in ensembles and thus leads to higher prediction 
performance compared to single models. We could demonstrate that SCOTCH outperforms 
existing approaches, but there is still room for improvement. Riemenschneider et al. (2016) 
already proposed that other regions beside the V3 loop, namely the V2 loop, might also be 



involved in coreceptor binding in subtype A. Involvement of V2 information might improve 
coreceptor tropism prediction of subtype A sequences in the future. However, although 
sequencing of the complete gp120 region might be useful in order to improve prediction accuracy 
for subtype A, it is not really practical due to length restrictions in the sequencing protocols at the 
moment. Nevertheless, there is little doubt that technological progress will soon make the 
sequencing of gp120, or even whole viral genomes, feasible for routine diagnostics. 

Conclusion 
Our new model SCOTCH was specifically developed for HIV-1 subtype A and it has been shown 
in our study to outperform the existing models, which have mostly been trained with subtype B 
sequences. However, lower prediction performance of SCOTCH compared to subtype B 
prediction tools implies the existence of a different binding mode of subtype A to the host cell, as 
already proposed by Riemenschneider et al. (2016). Other regions, in particular the V2 loop, might 
be also involved in this process. In the future we intend to improve our model by also incorporating 
other regions of the gp120 protein. However, incorporating longer reads may be impractical due 
to the distance between the V3 and V2 loops. In order to get V2 and V3 information 
simultaneously, a region of around 430 nucleotides within the env gene needs to be sequenced. 
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